SANDS88-1431 Distribution Category
Unlimited Release UC-32
Printed 7?7?77 19?7

ALGEBRA—

A Program That Algebraically
Manipulates the Output of a Finite
Element Analysis
(EXODUS Version)

Amy P. Gilkey
Applied Mechanics Division Il
Sandia National Laboratories, Albugquerque NM

Abstract

The ALGEBRA program allows the user to manipulate data from a finite ele-
ment analysis before it is plotted. The finite element output data is in the form
of variable values (e.g., stress, strain, and velocity components) in an EXO-
DUS database. ThALGEBRA program evaluates user-supplied functions of
the data and writes the results to an output EXODUS database which can be
read by plot programs.

ACKNOWLEDGEMENTS

The original version oALGEBRA was written by Mary R.
Sagartz and Johnny H. Biffle [bib:oldalg].

The version 0 ALGEBRA described in [bib:seaalg] manip-
ulates a SEACO database [bib:seaco].

Contents

I 1 o o [o) 4

22 Lo U= 4T o T [o U 6
2.1 The Assigned Variable ... 6
2.2 Restricting the Nodes and/or EIEMENtScovvvvviiiiiiiiiiiiiieeee 7
PG B O] £] - | £ T PP 7
2.4 VarabIES ... e 7
2.5 OPEIALOIS ..ottt ettt e e et e e ettt a e e e e 8
P2 T U o 1o 1O 9

3 CommMANd INPUL ... e e e e e e e e e e e e e 12
3.1 Database Editing COmMMAaNdScovuuiuiiiiiiiiiee e e 13
3.2 Variable Selection ComMmMaNdscouuiiiiiiiiiiiiii e 13
3.3 Time Step Selection COMMANTSoooiiiiiiiiiiiiiii e 14
3.4 Mesh Limiting COMMANASccoeeeiiiiiiiiiiieiies e 17
3.5 Element Block Selection Commandsceeiiiiiiiiiiiie e 17
3.6 Information and Termination COMMANAScceeeiiiiiiiiiiiiiiiir e 18

4 The Output EXODUS Databaseooovvviiiiiiiiiiiiiiie e 20

5 Informational and Error MESSAQEScccevviiiiiiiieiieiiiie et 22

6 Executing ALGEBRA ... 24
6.1 EXECULION FlES ... e e e 24
6.2 Special SOftWAIEcooiiiiiiiiiiii e e e e eeeeaaenes 24

A The EXODUS Database FOrmat............ccoovvviiiiiiiiiiiiiiiiieee e 28

B Summary Of FUNCHONS........oooiiiiiiieie e e e e e e e e e 32

C COMMANT SUMMATY ettt ettt e e e e e e e e e e e e e e eeeeeeeasann e e e e e e eaeaaeas 34

DS Y-V g] o] SIS T =211 (o] o 38

S (SIS U1 o] o [T 41T o £ OO 40

1 Introduction

The ALGEBRA program allows the user to manipulate data from a finite element program
before it is plotted. The program reads the database output from an analysis program,
manipulates the data using algebraic expressions supplied by the user, and writes the new
data to a database to be processed by a plot program such as BLOT [bib:blot].

The program’s algebraic evaluations allow special functions that are not provided by the
analysis program (such as principal values, effective stress, and pressure) to be available
for plotting. The evaluations include all of the FORTRAN arithmetic operations and most
of the FORTRAN functions plus several special functions.

Both the input and output databases are in the EXODUS database format [bib:exodus]. The
EXODUS format defines four types of variables:

* A history variable has a value representative of the system as a whole at each time
step (e.g., the total energy).

* A global variable is the same as a history variable except that global variables are
only included in “whole” time steps (explained below).

* A nodal variable has a value for every node of the mesh at each whole time step in
the analysis (e.g., the displacement in the x-direction).

* An element variable has a value for every element of the finite element analysis at
each whole time step (e.g., the stress in the x-direction).

There are two types of time steps in an EXODUS database: a “history-only” time step
contains the values for the history variables only; a “whole” time step includes the values
for all the variables (history, global, nodal, and element).

Each element in the database is assigned to an “element block”. An element block

distinguishes a material or an element type (such as a truss or quadrilateral). A specific
element variable may be undefined for some element blocks, meaning that the variable has
no value for elements in that element block.

The algebraic expressions to be evaluatedliEBRA depend on the values from the

input database. These input values include the time of the time step, the nodal coordinates,
and the history, global, nodal, and element variables calculated by the analysis program,
including values at specific nodes or elements. The values of variables from the previous
database time step or the first database time step may also be referenced in the algebraic
expressions. History, global, nodal, and element variables are creaaéGEBRA in the

output database, with the variable type determined by the types of variables in the
expression being evaluated.

The EXODUS database format includes the names of the coordinates and variables. This
allows the user to reference the input variables by name and to associate a meaningful name
with calculated data.

There are two or three (depending on the number of dimensions in the mesh) special nodal
variables which contain the displacement components at each node. The BLOT plot
program [bib:blot] expects these variables to follow certain order and naming conventions.
These variables must be the first nodal variables and they must start with “D” and end with
the last letter of the corresponding coordinate name.

ALGEBRA allows the user to restrict the information that is written to the output database.
The time steps to be written may be selected from those available on the input database.
The size of the output mesh may be limited by giving the nodal coordinates of a section of
the mesh or by selecting elements by element block.

2 Equation Input

The expressions to be evaluated are entered by the user as equations. The syntax is very
similar to FORTRAN equation syntax. The first item is the variable to be assigned, fol-
lowed by an £”, then the expression to be evaluated. The expression consists of constants,
variables, arithmetic operators, and functions.

The equations must adhere to the following syntax rules.
» Blanks are treated as delimiters, but are otherwise ignored.

» Either lowercase or uppercase letters are acceptable, but lowercase letters are
converted to uppercase.

» A ”character in any equation starts a comment. ThHehd any characters
following it on the line are ignored.

* An equation may be continued over several lines withi'@haracter. The*" and
any characters following it on the current line are ignored and the next line is
appended to the current line.

2.1 The Assigned Variable

The assigned variable name must start with a letter and can be up to eight alphanumeric
characters (A-Z, 0-9) long. A name that is longer than eight characters is truncated with a
warning. Blanks cannot be embedded in a variable name.

All assigned variables (except temporary variables specifieditL& TE command) will

be written to the output database. The input database variables are not written to the output
database unless they are assigned in an equation (sxch &9 or transferred with a

SAVE command.

The type of the assigned variable depends on the expression. There are four types of
“quantities” in an expression that are related to the variable types:

» History quantities include history variables, constants, and the time step time.

» Global quantities include global variables and nodal or element variables for
specific nodes or elements.

* Nodal quantities include nodal variables and nodal coordinates, unless the value is
limited to a specific node.

» Element quantities include element variables, unless the value is limited to a
specific element.

History and global quantities are referred to as “single-value” quantities. Nodal and
element quantities are referred to as “arrays”.

Each part of an expression yields a result of a particular type. The types of constants and
variables are defined above. The type of an arithmetic operation is dependent on the types

of its operands. If both operands are history quantities, the operation yields a history
guantity. If the operands are global and/or history quantities, a global quantity results. If
either operand is an array, the operation type is the array type. Thus a nodal quantity and
an element quantity cannot appear in the same operation. For array operations, the operator
is applied to each array element. The type of a function is dependent on the types of its
parameters. The rules for operand types also apply to all function parameters. One special
type of function yields a global quantity regardless of the parameter type.

Equations that result in a history variable are evaluated for each time step. Equations
resulting in other types of variables are evaluated only for “whole” time steps.

The assigned variable can be reassigned, but it must be assigned to the same variable type
(history, global, nodal or element).

The equations are evaluated in order. The assigned variables are grouped by variable type,
but are otherwise output in the order they are first assigned by the equations.

2.2 Restricting the Nodes and/or Elements

Nodes and/or elements may be deleted from the input database witd@# or VISI-
BLE commands. An input variable is defined for all input nodes and/or elements. An out-
put variable is only defined for the nodes and/or elements to be output.

Element variables may be undefined for certain element blocks. This may be further
restricted with theBLOCKS command. If two or more element variables are combined
with an operator or are function parameters, the resulting variable is only defined for an
element block if all the variables involved are defined for that block.

When an operation or function is performed on an array variable, it is only performed for
the defined nodes/elements. This is done to prevent problems with numerical errors such
as divide by zero for undefined values.

2.3 Constants

Constants can be entered in any legal FORTRAN numeric format (e.g., 5, 5.4 or 5.4E3).
All integers are converted to real numbers. If the constant is signed, parenthesis should
surround the sign and constant.

2.4 Variables

The variables that may be found in the expression to be evaluated are:
* any input database history, global, nodal or element variable,
 the values for any coordinate,

» areference to a specific nodal or element quantity,
» the time associated with each time step, and

» any previously assigned variable.

If an embedded blank is included in an input database variable or coordinate name, the
blank must be deleted in references to the variable. For example, vaBHbIX ™ must be
entered asSIGX”.

The coordinates may be referenced in the expression by name. They are treated as an input
database nodal variable whose value remains constant in all “whole” time steps.

If the value for a specific node or element is desire®; atid the node or element number

is appended to the variable name. For exangll8R$40 refers to the value for the \nth

40th element of variabl8IGR. A specifier may be appended to the name of any nodal or
element quantity in an expression, including coordinates and previously assigned variables.
References to specific nodes and/or elements can only be made if the variable is defined at
that node and/or element.

The value of a variable in the previous time step is referenced by appendirtg ¢éhe
variable name. The value in the first time step is referenced by appenditigta the
variable name. If time steps are selected, the previous and first time steps refer to the
selected time steps, not the input time steps.

The name TIME” is reserved for the time associated with each time step. The output
database times are copied from the input database unless a value is assigned to the variable
TIME. TheTIME expression must evaluate to a history quanfitylE may also appear in

the expression, referring to the input or assigned database time.

The equations are evaluated in order. References to a variable name in the expression refer
to the last assigned value, or to the input variable if the name has not been assigned. For
example, if input global variableONST has a value of 4 and the following equations are
executed,

X = CONST

CONST = 2*CONST
Y = CONST

the result isX equals 4CONST equals 8, an¥ equals 8.

2.5 Operators

The legal operations are addition (+), subtraction (-), multiplication (*), division (/), and
exponentiation (**). The operands may be either single-value or array quantities as
explained in Section [Ref: assvar] .

FORTRAN operator precedence rules apply (e.g., multiplication is performed before
addition). Parenthesis may be used to change the order of evaluation.

Two operators cannot be placed in succession. To precede a value with a sign, enclose the
sign and value in parenthesis. For example,

A = -5 * -SIN(0.5)

should be written as
A = (-5) * (-SIN(0.5))

where the parenthesis around {G&re optional.

2.6 Functions

Many of the standard FORTRAN functions and several special functions are implemented
in ALGEBRA . These functions are summarized in Appendix [Ref: appx:function] . The
parameters for any function may be expressions and all parameters must be supplied. The
parameters may be either single-value or array quantities as explained in Section [Ref: ass-
var] .

A function in an equation is distinguished from a variable name by(‘ttvehich follows

the function name. This allows the user to assign variable names which are the same as the
function names and to reference input database variables with the same names as the
functions.

FORTRAN Functions

The standard FORTRAN functions implemented ai& T, ANINT, ABS, MOD, SIGN,

DIM, MAX, MIN, SQRT, EXP, LOG, LOG10, SIN, COS, TAN, ASIN, ACOS, ATAN,
ATAN2, SINH, COSH, andTANH. The use and result of these functions is the same as in
FORTRAN, and the same restrictions apply.

Tensor Principal Values and Magnitude Functions

FunctionsPMAX andPMIN calculate the maximum and minimum principal values of a

symmetric tensor. For example, to obtain the maximum principal values for aTensor
SMAX = PMAX (T, s Tys Tag Ty To Tap)-

For a two-dimensional tensor or a tensor using cylindrical coordinates for an axisymmetric
solution,PMAX2 andPMIN2 may be used:

SMAX = PMAX2 (T, T, T).

The functionTMAG calculates the magnitude of the deviatoric part of a symmetric tensor.
To calculate the magnitude of ten3or

SMAG = TMAG (T, T,, To0 T, T, o)

where the following calculation is made:

_ 2 2 2 . 2 2 2
SMAG = \/(Tll) Tzz) * O—zz) T33) + (I'33) T11) +6 (T12 + T23 + T31)-

10

To obtain the von Mises stress, the value supplied by funtvRG is multiplied by the
constant /2. To calculate effective strain, multiply by the constého/3.0.

IF Functions

The functiondFLZ, IFEZ, andIFGZ provide a simple if-then-else capability. Each func-
tion expects three parameters: a condition, a true result, and a false result. REhetion
returns the true result if the condition evaluates to less than zero; otherwise the function
returns the false result. Functi®REZ checks for equal to zero atBGZ checks for
greater than zero. For example, the equation

x=IFLZ(cond, rtrue , rfalse)

with global parametersond rtrue, andrfalse could be implemented in FORTRAN by
IF (cond.LT. 0.0) THEN x =rtrue ELSE x =rfalse END IF

All the parameters are evaluated before the function, so both the true result and the false
result are evaluated even though only one is needed.

Array [Global Variable Functions

The functionsSUM, SMAX, andSMIN perform a calculation on a nodal or element array
parameter which produces a global res8llM sums all the array valueSMAX and
SMIN return the maximum and minimum of all the array values.

Values for specific nodes and/or elements are only included in the function calculation if
the variable is defined at that node and/or element.

Envelope Functions

An “envelope” function performs a calculation that is cumulative for all previous time
steps. The functioBNVMAX results in an array (assuming the parameter is an array) that
is the maximum of each array value for all previous selected time steps and the current
time step. On the last time st&\VMAX contains the maximum of each array value for

all selected time stepENVMIN is the corresponding minimum function.

11

12

3 Command Input

The user can issue a command whenever an equation is expected. The commands are in
free-format and must adhere to the following syntax rules.

+ Valid delimiters are a comma or one or more blanks.

» Either lowercase or uppercase letters are acceptable, but lowercase letters are
converted to uppercase.

e A"’ ”characterin any command line starts a comment. Tharid any characters
following it on the line are ignored.

* A command may be continued over several lines withbdrcharacter. The>”
and any characters following it on the current line are ignored and the next line is
appended to the current line.

Each command has an action keyword or “verb” followed by a variable number of
parameters.

The command verb is a character string. It may be abbreviated, as long as enough
characters are given to distinguish it from other commands.

The meaning and type of the parameters is dependent on the command verb. Most
command parameters are optional. If an optional parameter field is blank, a command-
dependent default value is supplied. Below is a description of the valid entries for
parameters.

* A numeric parameter may be a real number or an integer. A real number may be in
any legal FORTRAN numeric format (e.@,,0.2, -1E-2). An integer parameter
may be in any legal integer format.

» A string parameter is a literal character string. Most string parameters may be
abbreviated.

» Variable names must be fully specified. The blank delimiter creates a problem with
database variable names with embedded blanks. The program handles this by
deleting all embedded blanks from the input database names. For example, the
variable nameSIG R” must be entered aSIGR”. The blank must be deleted in
any references to the variable. All database names appear in uppercase without the
embedded blanks in all displays.

» Screen and mesh positions may be selected with the graphics cursor (also known as
the graphics locator). Cursor input is device-dependent and uses the VDI graphics
locator routines. When the program prompts for the position, the user positions the
graphics cursor (e.g., the crosshairs) on the screen, then selects the position by
pressing any printable keyboard character (e.g., the space bar). \fi

The notation conventions used in the command descriptions are:
» The command verb is ioold type.

13

» Aliteral string is in all uppercas®ANSERIF type and should be entered as shown
(or abbreviated).

» The value of a parameter is represented by the parameter naahiesn

» A literal string in square brackets (“[]”) represents a parameter option which is
omitted entirely (including any following comma) if not appropriate. These
parameters are distinct from most parameters in that they do not require a comma
as a place holder to request the default value.

» The default value of a parameter is in angle brackets (“< >"). The initial value of a
parameter set by a command is usually the default parameter value. If not, the initial
setting is given with the default or in the command description.

The commands are summarized in Appendix [Ref: appx:command] .
3.1 Database Editing Commands

TITLE

TITLE sets the title to be written to the output database. The title is input on the
next line. If noTITLE command is issued, the input database title is written to the
output database.

3.2 Variable Selection Commands

SAVE variable |, variable ,, ... or option |, option ,, ... <No Default>

SAVE transfers variables from the input database to the output database. An
individual variable may be transferred by listing its name as a parameter. For
example,

SAVEY, Z
has the same effect as the equations (with the exception noted below):
Y=Y Z=2.

Assigned variables are affected by BieOCKS commandSAVEd variables are
not.

The followingoptionstransfer sets of variables:

SAVE HISTORY transfers all input database history variables.
SAVE GLOBAL transfers all input database global variables.
SAVE NODAL transfers all input database nodal variables.

SAVE ELEMENT transfers all input database element variables.

14

SAVE ALL transfers all input database history, global, nodal, and element
variables.

The SAVE command causes the variables to be output in the same order they
would be if they were assigned by equations at that point.

If a SAVEd variable is also an assigned variable, the assigned value is written to
the output database, regardless of whetheGHE is done before or after the
assignment.

DELETE variable L variable ot e <No Default>

DELETE marks an assigned variable as a temporary variable that will not be
written to the output database. A variable must be assign&REd) before it
is listed in aDELETE command.

3.3 Time Step Selection Commands

ALGEBRA allows the user to restrict the time steps from the input database that are writ-
ten to the output database. By default, all the time steps from the input database are written
to the output database.

Time step selection is performed in one of the following modes:

* \ifx ALGEBRA\BLOT \bold Interval-Times Mode \else Interval-Times Mode \fi
selects time steps at uniform intervals between a minimum and a maximum time. If
this mode has a delta offset, the first selected time is not the minimum time, but the
minimum time plus the interval. If this mode has a zero offset, the first selected time
is the minimum time.

* \iflx ALGEBRA \BLOT \bold All-Available-Times Mode \else All-Available-
Times Mode \fi selects all time steps between a minimum and a maximum time.

* \iflx ALGEBRA \BLOT \bold User-Selected-Times Mode \else User-Selected-
Times Mode \fi selects time steps which are explicitly specified by the user.

The nearest time step from the database is chosen for each selected time.

The following are the time step selection parameters: \negmedskip
* tminis the minimum selected time,
* tmaxis the maximum selected time,
* nintvis the number of selected time intervals, and
» deltis the selected time interval.
In the interval-times mode, up mintvtime steps at intervalelt betweertmin andtmaxare

selected. The mode may have a delta offset or a zero offset. With a delta offset, the first
selected time ismint+delt, with a zero offset, it igmin.

15

In the interval-times mode with a delta offset, the number of selected time int@ntsls
and the selected time intendslt are related mathematically by the equations:

delt = (tmaxtmin) / nintv (1)
nintv = int ((tmintmay / delt) (2)

With a zero offsetnintv anddelt are related mathematically by the equations:
delt= (tmaxtmin) / (nintw-1) (1)
nintv =int ((tmirnrtmay) / delt) + 1 (2)

The user specifies eitheimtv or delt If nintvis specifieddeltis calculated using equation
1. If deltis specifiednintv is calculated using equation 2.

In the all-available-times mode, all database time steps betm@eandtmaxare selected
(parametersiintv and delt are ignored). In the user-selected-times mode, the specified
times are selected (all parameters are ignored).

TMIN tmin <minimum database time>

TMIN sets the minimum selected tirtrain to the specified parameter value. If the user-
selected-times mode is in effect, the mode is changed to the all-available-times mode.

In interval-times mode, ihintv is selected (by &INTV or ZINTV command)delt is
calculated. Ideltis selected (by BELTIME command)nintvis calculated.

TMAX tmax<maximum database time>

TMAX sets the maximum selected titneaxto the specified parameter value. If the user-
selected-times mode is in effect, the mode is changed to the all-available-times mode.

In interval-times mode, ihintv is selected (by &INTV or ZINTV command)delt is
calculated. Ideltis selected (by BELTIME command)nintvis calculated.

NINTV nintv<10 or the number of database time steps - 1,> whichever is smaller

NINTV sets the number of selected time internat$v to the specified parameter value and
changes the mode to the interval-times mode with a delta offset. The selected time interval
deltis calculated.

ZINTV nintv <10 or the number of database time steps,> whichever is smaller

ZINTV sets the number of selected time intermatv to the specified parameter value and
changes the mode to the interval-times mode with a zero offset. The selected time interval
deltis calculated.

DELTIME delt <(tmaxtmin) / (nintv-1), wherenintv is 10> or the number of
database time steps, whichever is smaller

16

DELTIME sets the selected time interdallt to the specified parameter value and changes
the mode to the interval-times mode with a zero offset. The number of selected time
intervalsnintv is calculated.

ALLTIMES

ALLTIMES changes the mode to the all-available-times mode.

TIMES [ADD] t,, t,, ... <no times selected>

TIMES changes the mode to the user-selected-times mode and selectg tinet. The
closest time step from the database is selected for each specified time.

Normally, aTIMES command selects only the listed time stepsADD is the first
parameter, the listed steps are added to the current selected times. Any other time step
selection command clears @lIIMES selected times.

Up to the maximum number of time steps in the database may be specified. Times are
selected in the order encountered on the database, regardless of the order the times are
specified in the command. Duplicate references to a time step are ignored.

STEPS[ADD,] n <no steps selected>

N

The STEPS command is equivalent to tFdMES command except that it selects time
steps by the step number, not by the step time.

HISTORY ON or OFF <ON>

HISTORY controls whether history time steps are SEACAS/included in the selected time
steps (ifON) or only whole time steps (DFF).

For example, if the times from the database are 0.0, 0.5, 1.0, 1.5, etc.\null , the commands
TMIN 0.0 TMAX 5.0 NINTV 5

select times 1.0, 2.0, 3.0, 4.0, and 5.0. IfNETV command is replaced by
ZINTV 3

then times 0.0, 2.5, and 5.0 are selected. INdNTV command is replaced by
DELTIME 2.0

then times 0.0, 2.0, 4.0 are selected.

Another example is given in Appendix [Ref: appx:example] .

17

3.4 Mesh Limiting Commands

These commands limit the mesh that is written to the output database by deleting nodes
and elements that do not satisfy the limiting conditions. A deleted node or element is
entirely removed from the output database and is ignored in all equation evaluations.
Deleting nodes and elements may cause the nodes and elements on the output database to
be numbered differently than those on the input database.

If both theZOOM andVISIBLE commands are in effect, the nodes and elements must
satisfy both the limiting conditions to be written to the output database.

By default, the entire mesh is written to the output database.

ZOOM xmin xmax ymin ymax zmin zmax<No Default>

ZOOM sets the limits of the mesh to be written to the output database. kimiits xmax
apply to the first coordinatgmin to ymaxto the second coordinate, anmhinto zmaxto

the third coordinate (if any). A node is deleted if it is not within the rectangle (or brick)
defined by these limits. An element is deleted if all of its nodes are deleted.

VISIBLE [ADD or DELETE,]block_id, block_id,, ... <all element blocks>

VISIBLE limits the element blocks to be written to the output database. An element that is
not in a “visible” element block is deleted. A node is deleted if all the elements containing
the node are deleted.

The block_id refers to the element block identifier (displayed by th8T BLOCKS
command).

If there is no parameter, all element blocks are visible. If the first parame&BDisor
DELETE, the element blocks listed are added to or deleted from the current visible set.
Otherwise, only the element blocks listed in the command are visible.

3.5 Element Block Selection Commands

BLOCKS [ADD or DELETE,]block_id, block_id,, ... <all element blocks>

BLOCKS selects the element blocks which have defined values for all following equations.
An element variable can be defined for an element block only if that block is selected. This
command can only mark element variables as undefined, it cannot mark previously
undefined variables as defined. It has no effect on nodal variables.

The BLOCKS command affects all following equations unless anoBe©CKS

command is entered. THRLOCKS command has no effect on the outputSHVEd
element variables.

18

The block_id refers to the element block identifier (displayed by th8T BLOCKS
command).

If there is no parameter, all element blocks are selected. If the first paranfeiHD isr

DELETE, the element blocks listed are added to or deleted from the current selected set.
Otherwise, only the element blocks listed in the command are selected.

MATERIAL [ADD or DELETE,]block_id, block_id, ... <all element blocks>
MATERIAL is exactly equivalent to BLOCKS command.

3.6 Information and Termination Commands

SHOW commandkno parameter>

SHOW displays the settings of parameters relevant toadhemandFor exampleSHOW
TMIN displays the time step selection criteria.

SHOW with no parameters displays any nondefault command parameters and all input
equations.

LIST option<no parameter>
LIST displays database information, depending orofit®n
\cmdoptionLIST VARS
displays a summary of the database. The summary SEACAS/includes the database title; the
number of nodes, elements, and element blocks; the number of node sets and side sets; and
the number of variables.
\cmdoptionLIST BLOCKS orMATERIAL
displays a summary of the element blocks. The summary SEACAS/includes the block
identifier, the number of elements in the block, the number of nodes per element, and the
number of attributes per element.
\cmdoptionLIST QA
displays the QA records and the information records.
\cmdoptionLIST NAMES

displays the names of the history, global, nodal, and element variables.

\cmdoptionLIST STEPS

19

displays the number of time steps and the minimum and maximum time step times.
\cmdoptionLIST TIMES

displays the step numbers and times for all time steps on the database.

HELP option<no parameter>
HELP displays information about th®. GEBRA program, depending on tlg@tion
\cmdoptionHELP RULES
displays a summary of the equation syntax rules.
\cmdoptionHELP COMMANDS
displays a summary of the commands.
\cmdoptionHELP FUNCTIONS

lists the names of all available functions and displays some useful equations, such as the
equation for effective strain.

\cmdoptionHELP

lists the availabl&lELP options and displays any nondefault command parameters and all
input equations.

LOG

LOG requests that the log file be saved when the program is exited. Each correct equation
and command that the user enters (excluding informational commands S40W8 is
written to the log file.

END

END ends the equation input and begins the equation evaluation. The BXIT ‘may
be used in place oEND”.

QUIT

QUIT ends the equation input and exits the program immediately without writing an output
database.

20

4 The Output EXODUS Database

The EXODUS database format is briefly described in Appendix [Ref: appx:exodus] . The
first part of the EXODUS database consists of the mesh description in the GENESIS data-
base format [bib:genesis]. The mesh description includes the nodal coordinates, the ele-
ment block information (including the element connectivity), the node sets, and the side
sets. The second part of the database contains the time step information, including all the
variable values for each time step.

If nodes and/or elements have been deleted from the database2A@@®M or VISIBLE
command, the entire output database reflects the deletions and any node or element
renumbering caused by the deletions.

The output database mesh description is copied (with changes for deletions) from the input
database. The database title may be changed witHi Th& command.

All QA records from the input database are copied to the output database, and a record is
added describing the curreAt GEBRA run. All input database informational records are
copied to the output database.

All names on the output database are in uppercase and have all embedded blanks removed.
The coordinate and element block names from the input database are converted and copied
(with changes for deletions) to the output database. The output variable names are assigned
in the equations.

The output database element variable truth table has an entry for each output element
variable which indicates whether the variable is defined for each element block. This is
determined by the input element variable truth table, the equations, aBil @EKS
command.

The output time steps include the time step times and the output variables for each time
step. Each selected input time step is processed; non-selected time steps are ignored. For a
history-only time step, only the history variables are evaluated and written out. For a whole
time step, all variables are evaluated and written to the output database.

21

22

5 Informational and Error Messages

ALGEBRA operates in three stages: (1) it scans the input database for general informa-
tion, (2) it inputs commands and equations from the user, (3) it re-reads the input database
and copies the mesh description to the output database, and (4) it evaluates the equations
for each time step.

ALGEBRA expects a valid database. If a format error is discovered before the time steps,
the program prints an error of the following format: \errfdbATABASE ERROR -
Readingdatabasdtem

and aborts. This problem may occur either while scanning the input database or while
copying the mesh description to the output database.

If a format error is found while reading the time steps, the following error message is
printed: \errfmWARNING - End-of-file during time steps oDATABASE ERROR -
Readingdatabasdatem.

If this error is encountered while scanning the input database, the time step with the error
and all following time steps are ignored, but the program continues and the previous time
steps are available for processing. Some database errors may not be detected until the
equations are being evaluated. The program aborts when the error is encountered, but the
output database is correct for all previous time steps.

An equation is checked for syntax errors as soon as the user enters the line. If an error is
found, a message is printed and the equation is ignored (with a message to that effect). If
only a warning is printed, the equation is accepted. If the message is not sufficiently
informative, the description of the equation syntax (Chapter [Ref: chap:equation]) may be
helpful.

A command is performed as soon as it is entered. A command error usually causes the
command to be ignored. The command is usually performed if only a warning is printed.
The display after the command shows the effect of the command. If the message is not
sufficiently informative, the appropriate command description (Chapter [Ref:
chap:command]) may be helpful.

The evaluation loop processes each time step by reading the needed input database
variables, evaluating the equations, and writing the results to the output database. Any error
during this stage causes the program to abort (with a fatal error message). The output
database is readable, but it contains only the data from the time steps processed before the
error.

A numerical error while evaluating the equations (such as divide by zero) causes a fatal

error. A message is printed describing the error and the equation that caused the error is
displayed after the error message.

23

The program allocates memory dynamically as it is needed. If the system runs out of
memory, the following message is printed: \errfATAL ERROR - Too much dynamic
memory requested

and the program aborts. The user should first try to obtain more memory on the system.
Another solution is to run the program in a less memory-intensive fashion. For example,
entering fewer equations may require less memory.

ALGEBRA has certain programmer-defined limitations (for example, the number of
curves that may be defined. The limits are not specified in this manual since they may
change. In most cases the limits are chosen to be more than adequate. If the user exceeds a
limit, a message is printed. If the user feels the limit is too restrictive, the code sponsor
should be notified so the limit may be raised in future releas@ét GEBRA .

24

6 Executing a.cesra

The details of executingLGEBRA are dependent on the system being used. The system
manager of any system that rudA6GEBRA should provide a supplement to this manual
that explains how to run the program on that particular system. Site supplements for all
currently supported systems are in Appendix [Ref: appx:site] .

6.1 Execution Files
The table below summarizéd GEBRA ’s file usage.

Description Unit Number Type File Format

User input standard input input Section [Ref: chap:equation] and [Ref:
chap:command]

User output standard output output ASCII

EXODUS database 11 input Appendix [Ref: appx:exodus]
EXODUS database 12 output Appendix [Ref: appx:exodus]

Log file 99 optional output ASCII

All files must be connected to the appropriate unit beft&EBRA is run. Each file
(except standard input and output) is opened with the name retrieved by the EXNAME
routine of the SUPES library [bib:supes].

6.2 Special Software

ALGEBRA is written in ANSI FORTRAN-77 [bib:f77] with the exception of the follow-
ing system-dependent features:

» the OPEN options for the files and
* the use of ASCII characters that are not in the FORTRAN standard character set.

ALGEBRA uses the following software packages:

» the SUPES package [bib:supes] which SEACAS/includes dynamic memory
allocation, a free-field reader, and FORTRAN extensions and

25

26

References

[bib:oldalg]Mary R. Sagartz and Johnny H. Biffle, “ALGEBRA — A Computer Program
That Algebraically Manipulates Finite Element Output Data,” SAND80-2061, \SN-
LA , September 1980.

[bib:seaalg]Amy P. Gilkey, “ALGEBRA — A Program That Algebraically Manipulates the
Output of a Finite Element Analysis,” SAND86-0881, \SNLA , May 1986.

[bib:seaco]Zelma E. Beisinger, “SEACO: Sandia Engineering Analysis Department Code
Output Data Base,” SAND84-2004, \SNLA , in preparation.

[bib:blot]Amy P. Gilkey, “BLOT — A Mesh and Curve Plot Program for the Output of a
Finite Element Analysis,” SAND88-1432, \SNLA , in preparation.

[bib:genesis]Lee M. Taylor, Dennis P. Flanagan, and William C. Curran, “The GENESIS
Finite Element Mesh File Format,” SAND86-0910, \SNLA , May 1986.

[bib:exodus]William C. Mills-Curran, Amy P. Gilkey, Dennis P. Flanagan, “EXODUS: A
Finite Element File Format for Pre- and Post-Processing,” SAND87-2997, \SNLA
, In preparation.

[bib:f77]American National Standard Programming Language FORT,R¥herican Na-
tional Standards Institute, ANSI X3.9-1978, New York, 1978.

[bib:supes]John R. Red-Horse, William C. Curran, and Dennis P. Flanagan, “SUPES Ver-
sion 2.1 — A Software Utility Package for the Engineering Sciences ,” SAND90—
0247,\SNLA , May 1990.

27

28

A The EXODUS Database Format

The following code segment reads an EXODUS database. The first segment is the GENE-
SIS database format.

C --Open the EXODUS database file
NDB =9
OPEN (UNIT=NDB, ..., STATUS="OLD’, FORM="UNFORMATTED")
C --Read the title
READ (NDB) TITLE
--TITLE - the title of the database (CHARACTER*80)
--Read the database sizing parameters
READ (NDB) NUMNP, NDIM, NUMEL, NELBLK,
& NUMNPS, LNPSNL, NUMESS, LESSEL, LESSNL, NVERSN
--NUMNP - the number of nodes
--NDIM - the number of coordinates per node
--NUMEL - the number of elements
--NELBLK - the number of element blocks
--NUMNPS - the number of node sets
--LNPSNL - the length of the node sets node list
--NUMESS - the number of side sets
--LESSEL - the length of the side sets element list
--LESSNL - the length of the side sets node list
--NVERSN - the file format version number
--Read the nodal coordinates
READ (NDB) ((CORD(INP,I), INP=1,NUMNP), |=1,NDIM)
C --Read the element order map (each element must be listed once)
READ (NDB) (MAPEL(IEL), IEL=1,NUMEL)
C --Read the element blocks
DO 100 IEB = 1, NELBLK
C --Read the sizing parameters for this element block
READ (NDB) IDELB, NUMELB, NUMLNK, NATRIB
--IDELB - the element block identification (must be unique)
--NUMELB - the number of elements in this block
-- (the sum of NUMELB for all blocks must equal NUMEL)
--NUMLNK - the number of nodes defining the connectivity
-- for an element in this block
--NATRIB - the number of element attributes for an element
-- in this block
--Read the connectivity for all elements in this block
READ (NDB) ((LINK(J,1), J=1,NUMLNK, I1=1,NUMELB)
C --Read the attributes for all elements in this block
READ (NDB) ((ATRIB(J,1), J=1,NATRIB, I=1,NUMELB)
100 CONTINUE
C --Read the node sets
READ (NDB) (IDNPS(l), I=1,NUMNPS)
C --IDNPS - the ID of each node set
READ (NDB) (NNNPS(I), I=1,NUMNPS)

OO0

O0000000000

O0O000000

C --NNNPS - the number of nodes in each node set
READ (NDB) (IXNNPS(1), I=1,NUMNPS)

C --IXNNPS - the index of the first node in each node set

C - (in LTNNPS and FACNPS)

READ (NDB) (LTNNPS(l), I=1,LNPSNL)

29

C --LTNNPS - the nodes in all the node sets
READ (NDB) (FACNPS(I), I=1,LNPSNL)
C --FACNPS - the factor for each node in LTNNPS
C --Read the side sets
READ (NDB) (IDESS(I), I=1,NUMESS)
C --IDESS - the ID of each side set
READ (NDB) (NEESS(I), I=1,NUMESS)

C --NEESS - the number of elements in each side set
READ (NDB) (NNESS(I), I=1,NUMESS)
C --NNESS - the number of nodes in each side set
READ (NDB) (IXEESS(]), I=1,NUMESS)
C --IXEESS - the index of the first element in each side set
C -- (inLTEESS)

READ (NDB) (IXNESS(), I=1,NUMESS)
C --IXNESS - the index of the first node in each side set
C -- (inLTNESS and FACESS)
READ (NDB) (LTEESS(I), I=1,LESSEL)
C --LTEESS - the elements in all the side sets
READ (NDB) (LTNESS(l), I=1,LESSNL)
C --LTNESS - the nodes in all the side sets
READ (NDB) (FACESS(l), I=1,LESSNL)
C --FACESS - the factor for each node in LTNESS

A valid GENESIS database may end at this point or at any point until the number of
variables is read.

C --Read the QA header information
READ (NDB, END=900) NQAREC
C --NQAREC - the number of QA records (must be at least 1)
DO 110 IQA = 1, MAX(1,NQAREC)
READ (NDB) (QATITL(I,IQA), 1=1,4)
--QATITL - the QA title records; each record contains:
-- 1) analysis code name (CHARACTER*8)
-- 2) analysis code ga descriptor (CHARACTER?*8)
-- 3) analysis date (CHARACTER?*8)
-- 4) analysis time (CHARACTER*8)
110 CONTINUE
C --Read the optional header text
READ (NDB, END=900) NINFO
C --NINFO - the number of information records
DO 1201 =1, NINFO
READ (NDB) INFO(l)
C --INFO - extra information records (optional) that contain
C -- any supportive documentation that the analysis code
C -- developer wishes (CHARACTER*80)
120 CONTINUE
C --Read the coordinate names
READ (NDB, END=900) (NAMECO(l), I=1,NDIM)
C --NAMECO - the coordinate names (CHARACTER*8)
C --Read the element type names
READ (NDB, END=900) (NAMELB(I), 1=1,NELBLK)
C --NAMELB - the element type names (CHARACTER*8)

O0000

The GENESIS section of the database ends at this point.

30

C --Read the history, global, nodal, and element variable information
READ (NDB, END=900) NVARHI, NVARGL, NVARNP, NVAREL
--NVARHI - the number of history variables
--NVARGL - the number of global variables
--NVARNP - the number of nodal variables
--NVAREL - the number of element variables
READ (NDB)
& (NAMEHV(I), I=1,NVARHI),
& (NAMEGV(l), I=1,NVARGL),
& (NAMENV(I), I=1,NVARNP),
& (NAMEEV(l), I=1,NVAREL)
--NAMEHI - the history variable names (CHARACTER*8)
--NAMEGYV - the global variable names (CHARACTER*8)
--NAMENYV - the nodal variable names (CHARACTER*8)
--NAMEEYV - the element variable names (CHARACTER*8)
READ (NDB) ((ISEVOK(l,J), I=1,NVAREL), J=1,NELBLK)
C --ISEVOK - the name truth table for the element blocks;
C -- ISEVOK(i,j) refers to variable i of element block j;
C -- thevalueis 0 if and only if data will NOT be output for
C
C

C
C
C
C

-- variable i for element block j (otherwise the value is 1)
--Read the time steps
130 CONTINUE
READ (NDB, END=900) TIME, HISTFL
C --TIME - the time step value
C --HISTFL - the time step type flag:
C -- 0.0 for all variables output ("whole" time step) else
C -- only history variables output ("history-only” time step)
C

READ (NDB) (VALHV(IVAR), IVAR=1,NVARGL)
C --VALHYV - the history values for the current time step
IF (HISTFL .EQ. 0.0) THEN
READ (NDB) (VALGV(IVAR), IVAR=1,NVARGL)
C --VALGYV - the global values for the current time step
DO 140 IVAR =1, NVARNP
READ (NDB) (VALNV(INP,IVAR), INP=1,NUMNP)
C --VALNV - the nodal variables at each node
C -- for the current time step
140 CONTINUE
DO 160 IBLK =1, NELBLK
DO 150 IVAR =1, NVAREL
IF (ISEVOK(IVAR,IBLK) .NE. 0) THEN
READ (NDB) (VALEV(IEL,IVAR,IBLK),

& IEL=1,NUMELB(IBLK))
C --VALEYV - the element variables at each element
C -- for the current time step
END IF

150 CONTINUE
160 CONTINUE
END IF
C --Handle time step data

GOTO 130

900 CONTINUE
C --Handle end of file on database

31

32

B Summary of Functions

Standard FORTRAN Functions

r =AINT (X) truncation:|

r = ANINT (X) nearest integerx[+ .5*sign)]
r =ABS (X) absolute valuex|

r =MOD (x, y) remainderx -y * [x/y]

r =SIGN (x,y) transfer of signx| signy

r =DIM (x,y) positive differencex - min(x,y)
r =MAX (X, Y, ...) maximum ok, vy, ...

r =MIN (X, Y, ...) minimum ofx, y, ...

r =SQRT (X) square rootvx

r=EXP (xX) exponentiation:’e

r=LOG (x) natural logarithm: log

r =LOG10 (x) common logarithm: logx
r=SIN (x) sinex

r=COS (x) cosinex

r=TAN (x) tangeni

r =ASIN (x) arc sinex

r =ACOS (x) arc cosine

r =ATAN (x) arc tangenx

r =ATAN2 (x,y) arc tangenx/y

r =SINH (xX) hyperbolic sine

r =COSH (x) hyperbolic cosin&

r = TANH (x) hyperbolic tangent

Tensor Principal Values and Magnitude Functions

r=PMAX (T, T, Top T Ton T5,) mMaximum principal values

17 33 12

r=PMIN (T, T, Top T, T,p T5,) minimum principal values

22" "33
r=PMAX2 (T, T,, T,,) maximum principal values (2D)

17

r=PMIN2 (T , T,, T,,) minimum principal values (2D)
r=TMAG (T, T,, T,; T,,, T,,, T,,) magnitude of the deviatoric part
IF Functions

r =IFLZ (cond rtrue, rfalse) if cond< 0.0,rtrue elserfalse
r =IFEZ (cond rtrue, rfalse) if cond= 0.0,rtrue elserfalse

33

r =IFGZ (cond rtrue, rfalse) if cond> 0.0,rtrue elserfalse
Array [0 Global Variable Functions

r=SUM (x) sum ofx over all nodes or elements

r = SMAX (x) maximum ofx over all nodes or elements

r =SMIN (x) minimum ofx over all nodes or elements
Envelope Functions

r = ENVMAX (x) maximum ofx over all previous time steps
r = ENVMIN (X) minimum ofx over all previous time steps

34

C Command Summary

Database Editing Commands (page [Pageref: cmd:dbedit])
\cmdsumTITLE

sets the title to be written to the output database.

Variable Selection Commands (page [Pageref: cmd:varsel])
\cmdsumSAVE variable,, variable,, ... oroption,, option,, ...
transfers variables from the input database to the output database.
\cmdsumDELETE variable,, variable,, ...

marks an assigned variable as a temporary variable that will not be written to the output
database.

Time Step Selection Commands (page [Pageref: cmd:timesel])
\cmdsumTMIN tmin
sets the minimum selected timethoin.
\cmdsumTMAX tmax
sets the maximum selected timentax
\cmdsumNINTV nintv
sets the number of selected time intervalsindv (delta offset).
\cmdsumZINTV nintv
sets the number of selected time intervalsindv (zero offset).
\cmdsumDELTIME delt
sets the selected time intervaldelt
\cmdsumALLTIMES
selects all time steps betwetamn andtmax

\ifx ALGEBRA\ALGEBRA

35

\fi \cmdsumTIMES [ADD,] t , t,,
selects times, t,, etc.
\cmdsumSTEPS [ADD,] n,, n,, ...

selects time stepy, n,, etc.

\cmdsumHISTORY ON or OFF
controls whether history time steps are SEACAS/included in the selected time steps.
Mesh Limiting Commands (page [Pageref: cmd:meshlimit])

\cmdsumZOOM xmin, xmax ymin, ymax zmin zmax
sets the limits of the mesh to be written to the output database.
\cmdsumVISIBLE [ADD or DELETE,] block_id, block_id, ...
limits the element blocks to be written to the output database.

Element Block Selection Commands (page [Pageref: cmd:blocksel])
\cmdsumBLOCKS [ADD or DELETE,] block_id, block_id, ...
selects the element blocks which have defined values for all following equations.
\cmdsumMATERIAL [ADD or DELETE,] block_id, block_id,, ...

is exactly equivalent to RBLOCKS command.

Information and Termination Commands (page [Pageref: cmd:infoterm])
\cmdsumSHOW command
displays the settings of parameters relevant tedhemand
\cmdsumLIST option
displays database information.
\cmdsumHELP option

displays information about th&. GEBRA program.

36

\cmdsumLOG

requests that the log file be saved when the program is exited.
\cmdsumEND

ends the equation input and begins the equation evaluation.
\cmdsumQUIT

ends the equation input and exits the program immediately without writing an output
database.

37

38

D Sample Session

The following is an example session WL GEBRA . Text following theALGEBRA
prompt ALG>) is supplied by the user. The program response (if any) is shown directly
below the equation or command. Comments on the example itakcis

ALG>LIST VARS

Database: UD:[APGILKE.EXODUS]TAPE11.EXO;1
SAMPLE DATABASE FOR ALGEBRA

Number of coordinates per node = 2
Number of nodes = 644
Number of elements = 480
Number of element blocks = 1
Number of node sets = 0
Number of side sets = 0

Code: MISCPROG version 1.0 on 12/23/85 at 10:21:59

ALG>LIST STEPS

Number of time steps = 21 (including 0 history-only)
Minimum time = 0.00
Maximum time = 10.00

ALG>SHOW TMAX

Select all times from 0.0 to 10.0
Number of selected times = 21

ALG> TMAX 5.0

Select all times from 0.0 to 5.0
Number of selected times = 11

ALG>NINTV 5

Select times 0.0 to 5.0 in 5 intervals with delta offset
Number of selected times =5

These commands select up to 5 time steps between 0.0 and 5.0 starting at an offset (1.0)
from 0.0. The steps with the times nearest 1.0, 2.0, 3.0, 4.0, and 5.0 are selected. The
equations are evaluated and the results written to the output database only for the selected
steps.

ALG>LIST NAMES

Coordinate names: R Z

Variables Names:

History:

Global: RESIDUAL ENERGY NORM L2NORM

Nodal: DISPLR DISPLZ VELR VELZ ACCELR ACCELZ
Element: SIGR SIGZ SIGT TAURZ EPSR EPST

39

EPSRZ
ALG>SAVE NODAL

All the input database nodal variabl@&$PLR, DISPLZ, ..., ACCELZ) will be written
unchanged to the output database (unless they are assigned a value or |BiedHT B
command).

ALG> VONMISES = (1.0/SQRT(2.0)) * TMAG(SIGR,SIGZ,SIGT,TAURZ,0,0)
ALG> EFFSTR = SQRT(1.5) * 5.79E-3 * VONMISES**4 * EXP(-12.0/300.0*1.987)
ALG> PRESS = (SIGR + SIGZ + SIGT) / 3.0

ALG> PRESS100 = (SIGR$100 + SIGZ$100 + SIGT$100) / 3.0

ALG> PHI = EFFSTR - 0.023 - PRESS * (4.43E-8 - 3.7E-15 * PRESS)

ALG> ALPHA = SIGR$56

ALG> BETA = ALPHA +1.414

Assign element variablaSONMISES, EFFSTR, PRESS, andPHI and global variables
PRESS100, ALPHA, andBETA. Note that the?RESS100 equation could be replaced
by “PRESS100 = PRESS$100".

ALG>DELETE ALPHA

ALPHA (assigned in the equatioMEPHA = SIGR$56" above) becomes a temporary
variable and will not be written to the output database.

ALG>BAD = (A + 1)) + SIN (1,2)

*** Expected 1 parameter(s) for function SIN, found 2
*** Parenthesis do not balance
**x "A" is not a database variable

Equation ignored

This equation contains several errors. Each error is flagged and the equation is ignored.
ALG>END

No further user input is accepted and the equation evaluation begins.

40

E Site Supplements

VAX VMS
The command to execull. GEBRA on VMS is:

\cmd ALGEBRA input_database output_database user_input

Input_databases the filename of the input EXODUS database. A prompt appears if
input_databasés omitted. The default iIFBAPE11.EXO.

Output_databasés the filename of the output EXODUS database. A prompt appears if
output_databases omitted. The default IFAPE12.EXO.

If user_inputs given, the user input is read from this file. Otherwise user input is read from
SYSS$INPUT (the terminal keyboard). User output is directed to SYSSOUTPUT (the
terminal).

ALGEBRA operates in either interactive or batch modes.

CRAY CTSS
To executeALGEBRA , the user must have selecteddbelib library and be runningcl.

The command to execull. GEBRA on CTSS is:

algebra input_database output_databaisenput o=output
Input_databasés the filename of the input EXODUS database. The defaiapesl1.
Output_databases the filename of the output EXODUS database. The defaalbed 1.

User input is read fronmput, which defaults tdty (the terminal keyword). User output is
directed tooutput which defaults taty (the terminal).

41

	1 Introduction
	2 Equation Input
	2.1 The Assigned Variable
	2.2 Restricting the Nodes and/or Elements
	2.3 Constants
	2.4 Variables
	2.5 Operators
	2.6 Functions

	3 Command Input
	3.1 Database Editing Commands
	TITLE

	3.2 Variable Selection Commands
	SAVE variable1, variable2, ... or option1, option2...
	DELETE variable1, variable2, ... <No Default>

	3.3 Time Step Selection Commands
	3.4 Mesh Limiting Commands
	3.5 Element Block Selection Commands
	3.6 Information and Termination Commands

	4 The Output EXODUS Database
	5 Informational and Error Messages
	6 Executing ALGEBRA
	6.1 Execution Files
	6.2 Special Software
	References
	A The EXODUS Database Format
	B Summary of Functions
	C Command Summary
	Database Editing Commands (page [Pageref: cmd:dbed...
	Variable Selection Commands (page [Pageref: cmd:va...
	Time Step Selection Commands (page [Pageref: cmd:t...
	Mesh Limiting Commands (page [Pageref: cmd:meshlim...
	Element Block Selection Commands (page [Pageref: c...
	Information and Termination Commands (page [Pagere...

	D Sample Session
	E Site Supplements
	VAX VMS
	\cmd ALGEBRA input_database output_database user_i...
	CRAY CTSS

	algebra input_database output_database i=input o=o...

	Contents
	1 Introduction 4
	2 Equation Input 6
	2.1 The Assigned Variable 6
	2.2 Restricting the Nodes and/or Elements 7
	2.3 Constants 7
	2.4 Variables 7
	2.5 Operators 8
	2.6 Functions 9
	3 Command Input 12
	3.1 Database Editing Commands 13
	3.2 Variable Selection Commands 13
	3.3 Time Step Selection Commands 14
	3.4 Mesh Limiting Commands 17
	3.5 Element Block Selection Commands 17
	3.6 Information and Termination Commands 18
	4 The Output EXODUS Database 20
	5 Informational and Error Messages 22
	6 Executing ALGEBRA 24
	6.1 Execution Files 24
	6.2 Special Software 24
	A The EXODUS Database Format 28
	B Summary of Functions 32
	C Command Summary 34
	D Sample Session 38
	E Site Supplements 40

	ALGEBRA— A Program That Algebraically Manipulates ...
	Amy P. Gilkey
	Applied Mechanics Division III
	Sandia National Laboratories, Albuquerque NM
	Abstract

